The Conversion of Photoinactive Protochlorophyllide(633) to Phototransformable Protochlorophyllide(650) in Etiolated Bean Leaves Treated with delta-Aminolevulinic Acid.
نویسنده
چکیده
The relationship of phototransformable protochlorophyllide to photoinactive protochlorophyllide has been studied in primary leaves of 7- to 9-day-old dark-grown bean (Phaseolus vulgaris L. var. Red Kidney) seedlings. Various levels of photoinactive protochlorophyllide, absorbing at 633 nm in vivo, were induced by administering delta-aminolevulinic acid to the leaves in darkness. Phototransformable protochlorophyllide, absorbing at 650 nm in vivo, was subsequently transformed to chlorophyllide by a light flash, and the regeneration of the photoactive pigment was followed by monitoring the absorbance increase at 650 nm in vivo. A small increase in the level of protochlorophyllide(633) causes a marked increase in the extent of regeneration of protochlorphyllide(650) following a flash. High levels of the inactive pigment species, however, retard the capacity to reform photoactive protochlorophyllide. A nonstoichiometric and kinetically complex decrease in absorbance at 633 nm in vivo accompanied the absorbance increase at 650 nm. The half-time for protochlorophyllide(650) regeneration in control leaves was found to be three times longer than the half-time for conversion of chlorophyllide(678) to chlorophyllide(683) at 22 C. The results are consistent with the hypothesis that protochlorophyllide(633) is a direct precursor of protochlorophyllide(650) and that the protein moiety of the protochlorophyllide holochrome acts as a "photoenzyme" in the conversion of protochlorophylide to chlorophyllide.
منابع مشابه
Studies on the regeneration of protochlorophyllide after brief illumination of etiolated bean leaves.
The effects of various inhibitors of nucleic acid and protein synthesis on protochlorophyllide synthesis in dark-grown Phaseolus vulgaris var. Red Kidney have been studied. Actinomycin D, chloramphenicol, and puromycin inhibit the regeneration of protochlorophyllide holochrome (detected as a 650 mmu absorption peak) in vivo in darkness after photoconversion of endogenous protochlorophyllide a t...
متن کاملInduction of porphyrin synthesis in etiolated bean leaves by chelators of iron.
Primary leaves of 7- to 9-day-old etiolated seedlings of Phaseolus vulgaris L. var. Red Kidney infiltrated in darkness with aqueous solutions of alpha, alpha'-dipyridyl, o-phenanthroline, pyridine-2-aldoxime, pyridine-2-aldehyde, 8-hydroxyquinoline, or picolinic acid synthesize large amounts of magnesium protoporphyrin monomethyl ester and lesser amounts of magnesium protoporphyrin, protoporphy...
متن کاملPorphyrin Biosynthesis in Cell-free Homogenates from Higher Plants.
The porphyrin and phorbin biosynthetic activity of etiolated cucumber (Cucumis sativus, L.) cotyledons was compared to that of cotyledonary homogenates. Etiolated cotyledons incubated with delta-aminolevulinic acid accumulate protoporphyrin, coproporphyrin, small amounts of Mg protoporphyrin monoester, and trace amounts of uroporphyrin. They also incorporate 4-(14)C-delta-aminolevulinic acid in...
متن کاملChanging ratios of phototransformable protochlorophyll and protochlorophyllide of bean seedlings developing in the dark.
Protochlorophyll (Pchl) and protochlorophyllide (Pchlide) are at comparable levels in 2-day-old (young) etiolated bean leaves (Phaseolus vulgaris L. var. Red Kidney). During subsequent development in the dark, both pigments increase, but the rate of Pchlide increase is greater than that of Pchl, leading to the commonly observed predominance of Pchlide beyond 7 days (old leaves). Both protopigme...
متن کاملFine Structural Changes in Proplastids during Photodestruction of Pigments
Etiolated bean leaves supplied delta-amino-levulinic acid in the dark synthesize large amounts of protochlorophyllide which is not converted to chlorophyllide upon illumination of the leaves. The fine structure of the proplastids is not affected by the treatment. When leaves containing "inactive" protochlorophyllide are exposed to light of 700 ft-c for 3 hours, they lose practically all their g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 52 6 شماره
صفحات -
تاریخ انتشار 1973